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ABSTRACT 

 
In this paper, we introduce a new solution of the SIR model by using the differential fractional transformation 

method. We study the difference between the integral Riemann-Liouville, differential Riemann-Liouville and the 

Caputo fractional derivative. We use some theorems of the fraction to introduce the solution of SIR model. 

Numerical results have provided to confirm the theoretical result and the efficiency of the proposed method. 
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1. INTRODUCTION  
 

A major assumption of many mathematical models of 

epidemics is that the population can be divided into a 

set of distinct compartments. These compartments are 

defined with respect to disease status. The simplest 

model, which was described by Kermack and 

McKendrick in1927a [16-18], consists of three 

compartments: susceptible ( S ), infected ( I ), 

recovered ( R ). Susceptible Individuals that are 

susceptible have, in the case of the basic SIR model, 

never been infected, and they are able to catch the 

disease. Once they have it, they move into the 

infected compartment. Infected individuals can 

spread the disease to susceptible individuals. The 

time they spend in the infected compartment is the 

infectious period, after which they enter the 

recovered compartment. The SIR model is easily 

written using ordinary differential equations (ODEs), 

which implies  deterministic model (no randomness 

is involved, the same starting conditions give the 

same output), with continuous time (as opposed to 

discrete time). Analogous to the principles of reaction 

kinetics, we assume that encounters between infected 

and susceptible individuals occur at a rate 

proportional to their respective numbers in the 

population. The rate of new infections can thus be 

defined as SI , where   is a parameter for 

infectivity. Infected individuals are assumed to 

recover with a constant probability at any time, which 

translates into a constant per capita recovery rate that 

we denote with r , and thus an overall rate of 

recovery rI . Based on these assumptions we can 

draw the scheme of the model. 

 

 
The scheme can also be translated into a set of differential equations [13, 14]: 

 

 

 

  (1.1) 

 
.

dS
SI

dt

dI
SI rI

dt

dR
rI

dt





 

 



http://www.eaas-journal.org/
mailto:dhoda_isa@yahoo.com
mailto:amr_mahdy85@yahoo.com


April, 2014. Vol. 4, No. 11                                                ISSN2305-8269           

                                            International Journal of Engineering and Applied Sciences    
                                               © 2012 - 2014 EAAS & ARF. All rights reserved                
                                                                     www.eaas-journal.org                                                                                                                                 

 

13 
 

Using this model, we will consider a mild, short-lived 

epidemic, e.g. influenza, in a closed population. 

Closed means that there is no immigration or 

emigration. Moreover, given the time scale of 

influenza epidemics, we will not consider 

demographic turnover (birth or death), and all 

infections are assumed to end with recovery. The size 

of the population ( S I R  ) is therefore constant 

and equal to the initial population size, which we 

denote with the parameter N . 

 

      Let us now consider a population which is naive 

with respect to the disease we are consider. What 

happens if a single infected individual is introduced 

into such a population? Is there going to be an 

epidemic? How many people will be infected? We 

will answer these questions by implementing and 

simulating the model in R . 

 

     The differential transformation method is a 

numerical method based on a Taylor expansion. This 

method constructs an analytical solution in the form 

of a polynomial. Differential Transform Method 

(DTM) is one of the analytical methods for 

differential equations. The basic idea was initially 

introduced by Zhou [9] in 1986. Its main application 

therein is to solve both linear and nonlinear initial 

value problems in electrical circuit analysis. 

 

    This method develops a solution in the form of a 

polynomial. Though it is based on Taylor series, still 

it is totally different from the traditional higher order 

Taylor series method. The DTM is an alternative 

procedure for getting Taylor series solution of the 

differential equations. This method reduces the size 

of computational domain and is easily applicable to 

many problems. Large list of methods, exact, 

approximate and purely numerical are available for 

the solution of differential equations. Most of these 

methods are computationally intensive because they 

are trial-and error in nature, or need complicated 

symbolic computations. The differential 

transformation technique is one of the numerical 

methods for ordinary differential equations. This 

method constructs a semi-analytical numerical 

technique that uses Taylor series for the solution of 

differential equations in the form of a polynomial. It 

is different from the high-order. Taylor series method 

which requires symbolic computation of the 

necessary derivatives of the data functions. The 

Taylor series method is computationally time-

consuming especially for high order equations. The 

differential transform is an iterative procedure for 

obtaining analytic Taylor series solutions of 

differential equations. The main advantage of this 

method is that it can be applied directly to nonlinear 

ODEs without requiring linearization, perturbation. 

This method will not consume too much computer 

time when applying to nonlinear or parameter 

varying systems. This method gives an analytical 

solution in the form of a polynomial. But, it is 

different from Taylor series method that requires 

computation of the high order derivatives. The 

differential transform method is an iterative 

procedure that is described by the transformed 

equations of original functions for solution of 

differential equations. In recent decades, many 

effective methods have been established for solutions 

of differential equations , such as the two-boundary-

value problems [1], the two-dimensional differential 

transform method [2],  the optimization of the 

rectangular fins [3-5], the initial value problems [6-

8], the Adomain decomposition method [10], and so 

on. Unlike the traditional high order Taylor series 

method which requires a lot of symbolic 

computations, the differential transform method is an 

iterative procedure for obtaining Taylor series 

solutions. 

  The rest of this article is organized as follows: In 

Sec.2, basic definitions and theorems of fractional are 

given. In Sec.3, we apply the solution of SIR model. 

In Sec.4, numerical results are given. In Sec.5, some 

conclusions are given. 

 

 

2. BASIC DEFINITIONS AND THEOREMS 

OF FRACTIONAL  
 

     There are several definitions of a fractional 

derivative of order  >0 [11, 12],e. g. Riemann-

Liouville, Grunwald-Letnikow, Caputo and 

generalized functions approach. The most commonly 

used definitions are the Riemann-Liouville and 

Caputo. We give some basic definitions and 

properties of the fractional calculus theory which are 

used further in this paper. 
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Definition 1: The Riemann-Liouville fractional derivative operator 
RD

of order   is defined by 
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Definition 2: The Caputo fraction derivative operator  
RD

 of order     is defined in the following 

Form [12]: 

1
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where  

 

Similar to integer order differentiation, Caputo fractional derivative operator is a linear operation 

          

            (2.3) 

 

where            are constant. 

 

Also Caputo fractional derivative can affect on constant  is constant 

For the Caputo’s derivative we have      

 

            (2.4) 

 

We use the ceiling function       to denote the smallest integer than or equal to    and           .                         Recall 

that for        ,  the Caputo differential operator coincides with usual differential operator of integer order. 

The following theorem that are given below, for proofs and details see ([21], [22]) 
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Now let us expand the analytic and continuous function        in terms of fractional power series as follows: 

                             (2.5)  

 To transform the initial condition to functions, we use the relation:- 

                 )2.6) 

             

where    is the order of fractional differential considered. 

3. SOLUTION OF SIR MODEL  

We now introduce fractional order into the model. The new system is described by the following set of FDE of order

, , 0
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So we have got the solution as the following: 
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4. NUMERICAL RESULTS   
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    
         
    

 

Put 18K   

   1 2 32 3( ) 1 ( ) t ( (1 ) ( ) (1 )(1 2 ) ( ) .....,
2 6

I t p t P t


                        

   1 2 32 2 2( ) 1 ( (P 1) ) t ( ) ( 1) (2 ) (1 )( ) [( ) 2 ... .
2 6

R t P p t p p t


                                  
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
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(18 9) (27) (1 ) (18) (0) (18)
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(37/10) (28/10) (28/10)

(1 ) 2(28/10) ( (19/10) ) (( (
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S S P S I S

P P
p

P

  

 
    


   

 
     

  
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
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1
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p
P
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 
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
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R P I

P P P
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 

  

 
        

     



 
    

  

 
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       


 2( 2 ) ( 1)P       

 

So we have got the solution as the following  

   

 

(1 ) (1 )9/10 18/10 27/102( ) (1 )[ (19/10) ] (28/10) ( (19/10) ) ( (19/10) ) .......
(19/10) (28/10) (37/10)

( ) 1 19/10 2 18/10( ) 1 ( (1 ) ( ) ( (1
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 
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.

 

The following table showing the results:

 

OBVIOUSLY TABLE 2 

K  S( )K  I( )K  R( )K  

0 
(1 )

(19/10)

P 


 

( )

(19/10)

 


 

(P 1)

(19/10)

  


 

9  (1 )[ (19/10) ]
(28/10)

p


    


  1 2( (1 ) ( )
(28/10)

p    


  1 2(19/10) ( 2 ) ( 1)
(28/10)

P p        


 

http://www.eaas-journal.org/


April, 2014. Vol. 4, No. 11                                                ISSN2305-8269           

                                            International Journal of Engineering and Applied Sciences    
                                               © 2012 - 2014 EAAS & ARF. All rights reserved                
                                                                     www.eaas-journal.org                                                                                                                                 

 

19 
 

18 
(28/10) ( (19/10) )(1 )

2(37/10) ( (19/10) )

P   

  

       
 

      

 
( (1 )( (19/10) )1

2(37/10) ( )( (1 ) ( ) )

p

P

  

    
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2(28/10) ( (1 ) ( ) )1

(37/10) 2( (19/10)P ( 2 ) ( 1)

P P

P

    

     

 
     
 

        

 

 

 

Figure 1. The behavior of the approximate solution ( Sm(t), Im(t), and  Rm (t)) respectively, at    = 0.9 ,         

        with initial conditions S(0)=5000, I(0)=5, R(0)=0. 
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Figure 2. The 4-order Rung-Kutta method for SIR 

model with                             with 

the same  initial conditions of the approximate 

solution ( Sm(t), Im(t), and  Rm (t)) respectively, at    

= 0.9 ,                 with initial conditions 

S(0)=5000, I(0)=5, R(0)=0. 

 

From these figures, we can confirm that the 

approximate solution is an excellent agreement with 

the solution using the fourth order Runge-Kutta. 

Also, from the figures, we can conclude that the 

behavior of the approximate solution depends on the 

order of the fractional derivative. 

 

 

5. CONCLUSION  

In this article, we have used a new solution of SIR 

model by using the differential fractional 

transformation method to study the effect of the 

vaccine on diseases. We have used some definitions 

such as Aids Caputo definition of fractional calculus, 

as well as the definition of the Riemann-Liouville. 

Also we have provided some scientific theories in 

ways to solve differential equations which fractional 

contributed significantly in solving the model sports 

SIR, It may be concluded that this technique is very 

powerful. 
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