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                                                                   ABSTRACT 

In worm blooded bodies, the anatomy of a superficial organ controls the influences of the volumetric heat 

generation rate, the perfusion rate and the heat losses rate especially due to convection and radiation on 

the tissue temperature. With considering the organ’s physical structure and basis on the Pennes' bioheat 

transfer equation, a  one-dimensional bioheat transfer model of living tissues in the steady state have been 

set up for application in different body organ’s heat transfer study, and by using either the particular 

solution or Bessel's equation their corresponding analytic solutions have been derived. The derived 

analytic solutions are useful to easily and accurately explore the correlation between thermal features and 

body anatomy, and can be extended to such applications as parameter measurement, temperature field 

reconstruction and clinical treatment. The obtained results are also validated by numerical methods.  

Keywords: Electronic engineering, interior temperature, Pennes' bioheat transfer equation 

 

1. Introduction 

In living bodies, heat transfer plays an important role 

in many physiological processes as it affects the 

temperature and its spatial distribution in tissues. 

Advances in the research of bioheat transfer paved 

the way to the developments in diverse areas such as 

hyperthermia cancer therapy, thermal diagnosis, 

cryogenic surgery etc. [1, 2]. The prerequisite for 

further quantitative and accurate analysis of bioheat 

transfer is to effectively understand and model the 

transfer mechanism of mass and energy in the 

biological system. 

Thermal energy transfer in living tissues is a complex 

process which includes conduction, convection, 

radiation, interior metabolism, evaporation, phase 

change, and inherent temperature regulation. 

Furthermore, heterogeneity of living tissues and 

discrepancies in biological materials biothermal 

behavior have a remarkable effect of blood perfusion 

on the temperature field in body, which varies among 

different tissues and organs. Therefore, it is very 

difficult to build generally applicable models to 

precisely describe the heat transfer process, and most 

of the proposed bioheat equations are very 

complicated. Generally, the complexity of the bioheat 

transfer equations makes it difficult to obtain their 

analytic solutions. 

However, analytical solutions of these equations, if 

attainable, are of important significance in the study 

of bioheat transfer because they can not only 

accurately reflect the actual physical feature of 

equations but also be used as standards to verify the 

corresponding results of numerical calculation. 

Various techniques have been proposed to obtain 

analytical solutions of the equations. Shitzer [3] 

presented and discussed the solutions for models of 

living tissue cooled at the skin surface. Bardati [4] 
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linearised and solved the non-linear operator equation 

for microwave hyperthermia treatments. Analytical 

solution also depends on bioheat equation and 

boundary conditions. T. C. Shih et al. [5] presented 

the solution of the Pennes bioheat equation with 

sinusoidal heat flux on skin boundary. The same 

bioheat equation was solved in [6] for spatial or 

transient heating boundary.  All of the above 

mentioned analyses were performed in rectangular 

pyramidal tissue model. 

However, the organs in human body have different 

physical structure. For example, the hand and leg are 

almost cylindrical, the back and male chest are close 

to solid rectangle and likewise buttock and female 

breast can be approximated as sphere. Depending on 

the geometry the volumetric heat generation rate and 

perfusion rate and the surface area over which 

convection and radiation heat losses occur would be 

changed. Therefore the temperature distribution in 

tissue inside would vary from organ to organ. Kai 

YUE solved the problem for cylindrical tissues [7] 

while Zhou Minhua et al [6] used rectangular 

pyramidal tissues.  

The objective of this study is to develop a model of 

live organs considering their physical structure and 

solve the second order heat temperature equation 

with non-linear boundary conditions to estimate the 

radial flow of temperature. However the analysis 

includes the analytical solution of the steady-state 

bioheat equation with total heat exchange at skin 

surface has been discussed, and its corresponding 

numerical solution and the application of analytical 

results to determine some biothermal parameter’s 

effect on thermal distribution.  

 

2. The Bioheat Equation 

 

Pennes’ developed a bio-heat model considering 

blood perfusion and artier blood temperature effect 

on in-tissue temperature distribution which is 

presented as: 

                         ρc dT/dt=k∇^2 T+ω_b c_b (T_a-T)+Q_m         (1.1) 

where ρ and c refer to the density and specific heat of tissue, respectively, ω_b is the product of blood 

density and perfusion rate per unit volume of tissue, c_b is the specific heat of blood, T_a is the artier 

blood temperature and Q_m is the rate of metabolic heat generation per unit volume of tissue.  

In particular tissue, the temperature flow is controlled 

by the blood circulation rate, metabolism and thermal 

conductivity. Changes in any of these parameters, 

most likely for tumour, can induce variation in flow 

rate and spatial distribution of temperature and heat 

flux at skin surface. However, the transient 

temperature term of the Equation (1.1) has been 

neglected because of the time independency of other 

bio-thermal parameters in the equation. Therefore the 

steady-state form of the bio-heat equation along with 

suitable boundary conditions can provide spatial 

temperature distribution inside tissues.    

However, the prominent heat flow occurs in the 

radial direction of an organ and involves choosing 

appropriate coordinate systems while solving the 

problem analytically. Therefore, the formulation for 

steady-state heat equation and boundary conditions in 

three different coordinate systems become the 

following. 

For rectangular pyramidal tissues, 

k (d^2 T)/〖dx〗^2 +ω_b c_b (T_a-T)+Q_m=0        (1.2) 

For cylindrical tissues, 

1/ρ  d/dρ (ρ dT/dρ)+(ω_b c_b)/k (T_a-T)+Q_m/k=0   (1.3) 

Similarly for spherical tissues, 

1/r^2   d/dr (r^2  dT/dr)+(ω_b c_b)/k (T_a-T)+q_m/k=0   (1.4) 
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And the generalized boundary conditions are: 

n=0,   dT/dn=0      (1.5-a) 

n=L,        -k dT/dn=h_a (T-T_e )      (1.5-b) 

where, L is the thickness of the concerned tissue; 

h_a is the total heat exchange coefficient which 

accounts for both the convection and radiation 

heat loss on the tissue surface; T_e is the 

ambient temperature; n is the radial direction, 

for example, x-for rectangular tissues, ρ-for 

cylindrical tissues and r- for spherical tissues. 

 

3. Physical Model  

The temperature flow in the flat body part (such as 

back and male chest, can be approximated as a 3-D 

rectangular box, Figure 1) governs by the heat 

equation in (1.2) and boundary conditions in (1.5).   

It is assumed that the core plane hold at the constant 

artier temperature and according to the boundary 

conditions, it is thermally insulated and the heat flux 

at the skin surface is fully exchange with 

environment. Further assuming the prominent in x-

direction, the one-dimensional steady-state Pennes’ 

bio-heat equation can be written as: 

 

(d^2 T)/〖dx〗^2 -αT=-β        (1.6)  

Fig 1 Rectangular pyramidal tissue model                  

 

 

where α=(ω_b c_b)/k and β=(ω_b c_b T_a+Q_m)/k. The 

general solution of Equation (1.6) is obtained as: 

 ( )     
       

   
 

 
        (   ) 

The evaluation of arbitrary constants C_1 and C_2 is 

determined using the following boundary conditions. Thus 

the solution becomes, 
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Therefore, the equation (1.8) provides the temperature 

flow along the line AB for the rectangular tissues.  

      

 

Accordingly, the cylindrical tissues (i.e. tissues in arm, 

forearm, leg etc.) in Fig 2 govern by the one-dimensional 

equation 1.3 which describes the heat transfer in such 

tissues in the steady-state.  

To derive the radial heat flow along the line AB, the 

nondimensionalizations of the Equation 1.3 and its 

boundary conditions have been performed by the 

following characteristic quantities:  

   
 

 
            

    

     
            (   ) 

Then, substituting (1.9) back into Equation (1.3) leads to: 
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 Therefore the dimensionless parameters and variables are 

defined as: 
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         (    ) 

Hence, the original dimensional equation and the 

boundary conditions can be rewritten as: 
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)    
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And 

{
 

         
   

   
  

        
   

   
    

   

            (    ) 

 

In addition, in order to standardize the equation, we 

assume: 

    
    

          
                  (    ) 

Thus substituting (1.14) into Equation (1.12), we obtain 

 
   

    
 

 

  

  

   
                (    ) 

Equation (1.15) is a zero order modified Bessel 

differential equation, whose general solution can be 

expressed as: 

 ( )      ( )      ( )          (    ) 

where〖 I〗_v and K_v are the modified Bessel functions 

of the second kind. In order to determine if the analytic 

solution can be expressed by Bessel functions, Equation 

(1.15) has been compared with the Generalized Bessel’s 

equation as follows: 
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The corresponding solution of Equation (1.17) is: 

       [    (   )      (   )]                (    ) 

where    and    are the modified Bessel function 

of the first kinds respectively,    and    are 

arbitrary constants which can be obtained 

according to the given boundary conditions. The 

result of comparison between equation (1.15) 

and (1.18) is shown below: 

                      
Hereby, the solution of the Equation (1.17) can 

be expressed as: 

      (√   )      (√   )                (    ) 

 

Substituting (1.19) into (1.15), the solution for 

   can be written as: 
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The next step is to determine the values of two 

arbitrary constants    and  . According to the 

characteristics of Bessel’s equation, when    , 

we have   ( )    and   ( )   . Considering 

the boundary conditions in Equation (1.13), and 

after derivations of (1.20), lead to: 
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Finally analytical solution for   is given by: 
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The equation (1.21) expresses the radial heat 

flow in cylindrical living tissues. 
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Likewise the physical model of spherical live 

biological tissues at steady-state condition 

proposed in Figure 3. 

 To obtain the dimensionless heat equation and 

boundary conditions the following 

characteristics quantities are considered. 

   
 

 
    

    

     
         (    ) 

 

 
Fig 3 Spherical tissue model 

 

Using the Equation 1.22 the Equation 1.4 can be 

written as: 
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and the dimensionless boundary conditions are: 
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The dimensionless parameters and variables are 

defined as: 
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Therefore, the dimensionless governing equation 

is: 
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and the boundary conditions are: 
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By dropping the superscripts * and letting 

  
    and   

    
   , the equation (1.25) 

becomes: 
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)               (    ) 

To solve the equation (1.27), let’s assume 

  
 ( )

√ 
 and by differentiating we obtain, 
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 √ 
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Substituting (1.28) in (1.27) we obtain, 
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√ 
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The homogeneous equation is: 
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 √ 
 )  

 

√ 
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After simplifying and multiplying by √  , we 

obtain 

          (    (
 

 
)
 

)     (    ) 

The equation (1.31) is modified Bessel equation 

of half kind and therefore the solution is: 

        (√  )        (√  )    (    ) 

According to the characteristics of Bessel’s 

equation, we have     . Therefore, the 

solution to (1.32) is: 

        (√  )              (    ) 

The exact solution in terms of  ( ) is: 
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where,    is the particular solution and    
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Therefore, the temperature expression 

considering the superscript * again: 
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Considering the boundary condition of (1.26-b), 
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Therefore the Equation 1.38 provides the 

analytical solution for the temperature profile in 

tissue interior of spherical tissues.  

 
 

                                                                                                              

4. Numerical Model 

The numerical models of the living tissues of the above 

mentioned organs have been presented in order to validate 

the obtained analytical solution in section 3. The models 

were developed and analyzed using numerical analysis 

software, the COMSOL [10] multiphysiscs.  

The COMSOL solver is powerful and popular numerical 

analysis software which works based on the finite element 

method. The solver featured with an environment to 

analyze the heat transfer in Biological tissues which has 

been applied to estimate the internal temperature profiles 

of different types of living tissues. The stationary 

simulation process requires performing several steps 

including the geometry design, mesh formation, 

parameters and boundary settings. 

 

              (A) 

 

                                (B) 
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                            ( C ) 

Fig 4 Numerical models for (a) Rectangular, (b) 

Cylindrical and (c) Spherical tissues  
 

In geometry design the physical models in Figures 1 

through 3 have been considered. We assume the 

dimension 4 cm×10 cm×10 cm for the rectangular 

pyramidal tissues, the radius 4 cm and height 10 cm for 

the cylindrical tissues and the radius 4 cm for the spherical 

tissues. Therefore for each case the tissue thickness is 4 

cm (indicates line AB). The most convenient way to 

acquire radial tissue temperature is dividing the models 

into several segments (see Figure 1 to 3) and compute 

temperature along line AB. For that reason, we define 

three rectangles and extrude them in z-axis to develop the 

rectangular pyramidal model and also extrude six quarter 

circles in z-axis for the cylindrical model. However two 

quarter circles are revolved around z-axis to obtain the 

spherical model.  

The mesh structures of the models are shown in Figure 4. 

In Figure 4(a), the mesh layout of rectangular box model, 

the superficial boundary z = 0.04 is the skin surface and 

assumed to heat loss surface and the remaining five faces 

are thermally insulated. Accordingly, the mesh structure of 

cylindrical model, in Figure 4(b) has the heat exchange 

surface at ρ=0.04 and both the top and bottom circular 

surfaces are thermally isolated. However, for Figure 4(c) 

the sphere periphery is assumed exchanging heat with 

environment.  

In addition, the entire domain of the rectangular pyramidal 

model was divided into approximately 27000 tetrahedral 

and 3500 triangular elements. In the cylindrical tissues, the 

domain was composed of more than 200,000 tetrahedral 

elements and 28,000 triangular elements. Similarly for 

spherical organs, the tissues were divided into 

approximately 5060 tetrahedral and 800 triangular 

elements. Numerous iterations of mesh refinement were 

performed to determine the maximum and minimum 

element sizes in order to obtain a good resolution in the 

simulated patterns, and to minimize the computational 

memory and simulation time.  In addition, nodes along the 

surface area constrained in the normal-translational 

direction for all three geometries. All other nodes are 

unconstrained in all directions. A constant temperature of 

20 oC was applied at the entire section as an initial 

condition. The maximum and minimum element sizes are 

chosen as 0.6 and 0.2 mm, respectively. The maximum 

element aspect ratio is 1.5.   

The ‘Stationary’ analysis has been performed for steady-

state thermal analysis.  

5. Results and Discussion 

 

The analytic results obtained using MATLAB and the 

numerical results obtained from COMSOL have been 

presented abreast to show a clear comparison between 

them. For both analyses the values of the thermal 

parameters have been used is listed in Table 1. 

The analytic solutions in Equations (1.8), (1.21) and 

(1.38), respectively for the rectangular, cylindrical and 

spherical tissues and their respective numerical solutions 

are presented in Figure 5.  

 

                         Fig 5 Tissue temperature profiles 
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Table 1: Thermo-physical parameters  

Parameter Symbol Value Unit 

Thermal 

Conductivity 
  0.51 W m

-1
 
0
C

-1
 

Heat Exchange 

Coefficient 
   13.7 W m

2
 
0
C 

Specific Heat 

(Blood) 

   4186 J kg
-1

 
0
C 

Density (Blood)    1000 Kg m
-3 

Perfusion Rate    5.4×10
-4 

s
-1

 

Metabolism    700 W m
-3

 

Tissue Thickness 
 

0.04 m 

Arterial Blood 

Temperature 
   37 

0
C 

Environment 

Temperature 
   27 

0
C 

 

The temperature curves indicate that the flat organ’s 

tissues have higher temperature than the tubular and 

curved organs. Therefore the box organs may be the 

warmest parts of human body have roughly 1oC higher 

surface temperature than the spherical part or 0.5oC higher 

than the cylindrical part.   

In addition, the analysis also make it evident that in 

identical ambient condition and if all biothermal 

parameters remain the same then the temperature on 

human back or a male chest will have higher value than 

that of on the forearm or female breast. It may be due to 

the relatively smaller surface area over which  heat loss 

occurs for an equal volume flat organ.  

      

Fig 6 Effect of biological parameter on temperature profile 

in rectangular tissue –influence of (a) Metabolic heat 

generation, (b) Thermal conductivity and (c) Blood 

perfusion 
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Fig 7 Effect of ambient conditions and model 

thickness on temperature distribution – (a) Heat 

exchange rate, (b) Ambient temperature and (c) 

Tissue thickness 

The analysis has also been performed to estimate the 

influences of the bio-thermal and physical parameters on 

the tissue temperature. The Figure 6 shows the effect of 

some biological parameters on the temperature distribution 

of rectangular pyramidal tissues. The Figure 6(a) showed, 

how the tissue temperature has been affected by the 

change in metabolic heat generation. 

 
 

                               (8a) 

 

 
 

                             (8b) 
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              (8c) 

Fig 8 Effect of biological parameter on temperature profile 

in cylindrical tissue –influence of (a) Metabolic heat 

generation, (b) Thermal conductivity and (c) Blood 

perfusion 

 

               (9a) 

 

(9b) 

 
                          (9c) 

          Fig 9 Effect of ambient conditions and model    

thickness on temperature distribution – (a) Heat 

exchange rate, (b) Ambient temperature and (c) 

Tissue thickness 

 
If the metabolic rate changed from 700 W/m3 to 

1500 W/m3 the skin temperature increased by 

almost 0.1oC.  The Figure 6(b) indicates that the 

thermal conductivity has insignificant effect on 

the temperature distribution as it varied between 

0.48 and 0.55 W m-1 0C-1.  

 

In comparison with the case of blood perfusion 

of (w=5.4×10-4 1/s), it is obvious that the 

increase of blood perfusion has a remarkable 

influence on the surface temperature in living 

tissues as shown in Fig. 6c. The curves in Fig 6.c 

indicate that the gradient of the temperature 

variation in radial direction decreases with 

increasing blood perfusion, which is a result of 

higher rate of heat distribution caused by the 

blood perfusion. In addition, the differences 

between the effects of the higher blood perfusion 

rates on temperature distributions become 

smaller. The core temperature approaches to a 

constant value of 37oC. 

 

The effect of the ambient condition, for example, 

the heat loss rate and environment temperature 

on the temperature distribution in rectangular 

tissue have been presented in Figure 7(a) and 

(b), respectively. Both figures indicate that the 

ambient conditions have significant effects on 

the surface temperature. Therefore a controlled 

environment might play an important role in the 

hyperthermia diagnosis process.   
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                     (10a) 

 

 

 

                    (10b) 

 

                                                 
(10c) 

Fig 10 Effect of biological parameter on 

temperature profile in cylindrical tissue 

–influence of (a) Metabolic heat 

generation, (b) Thermal conductivity 

and (c) Blood perfusion 

 

 
                                    (11a) 

 
 

                                   (11b) 

            

 

                                             (11c) 
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Fig 11 Effect of ambient conditions and model thickness 

on temperature distribution – (a) Heat exchange rate, (b) 

Ambient temperature and (c) Tissue thickness 

The effect of tissue thickness on the temperature 

profile is also presented in Figure 7(c) where it is 

seen that tissue thickness has no effect on the surface 

temperature.  

 

The similar analyses have been conducted on the 

cylindrical and spherical tissues which are presented 

in Figures 8 through 11. The figures indicate that the 

profiles flow the similar behaviour of the rectangular 

tissues and the only inconsistency has been found for 

the temperature versus tissue thickness curve. Unlike 

the rectangular tissues the cylindrical and spherical 

organ’s thickness have a little influence on the 

surface temperature.   

 

 

The Figures 5 to 11 show that the derived analytical 

solutions comply with their respective numerical 

solutions. Therefore the obtained analytical solution 

is a suitable alternative tool for thermal analysis of 

living tissues located on different organs in human 

body. Consequently the further analysis has 

performed to provide some useful information about 

parameter’s effect on temperature distribution that 

can be applied to estimate the thermo-physical effect 

of a tumour. The heat conductivity, metabolic heat 

generation and blood perfusion rate could be affected 

in case of tumour     

 

6. Conclusion 

 

In this paper the analytical solution of one dimensional 

steady-state Pennes’ bio-heat model has been derived for 

rectangular pyramidal, cylindrical and spherical living 

tissues. The analytic solution expressed by the exact 

solution for rectangular tissues and by the Bessel’s 

function for cylindrical and spherical tissues is derived to 

obtain the temperature changes in radial direction. As a 

consequence, the accurate initial temperature field can be 

easily achieved with respect to the various transient 

analysis and calculation of heat transfer in living tissues.  

The results given by the precise analysis has been 

compared to the numerical solution to demonstrate the 

suitability of analytical results. The analysis also shows 

how organ’s geometry controls the temperature texture. 

The analysis result can also be applied to find the effect of 

thermal conductivity, heat generation rate, blood perfusion 

and heat exchange coefficient on the temperature 

distribution which can provide a good knowledge of 

thermal behaviour of living tissues. This information can 

be applied to measure the thermal parameters, the 

reconstruct the temperature field with the help of some 

optimization method and also can be extended for the 

thermal diagnosis and hyperthermia treatment.         
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